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SUMMARY

Exact, closed-form and general expressions of the marginal and joint moments as well as of the correlation
coefficient of the instantaneous powers of two Ricean signals are derived. All statistics are expressed as finite
sums of simple functions of the model parameters. The model includes environments where the Ricean factor
and the mean power of one signal are different from their counterparts of the other signal. Some plots illustrate
the generalised power correlation coefficient provided in this work. Coherence parameters are derived and
practical values for system design are suggested. Copyright © 2006 AEIT.

1. INTRODUCTION

In wireless communications, the signal envelope fluctuates
randomly throughout the propagation environment in a fast
fading condition. This fluctuation is caused essentially by
the multipath phenomenon, in which the signal reaching the
receiver is composed of a large number of scattered waves.
The classical distribution used to describe the envelope of
the multipath signal is the Rayleigh one [1]. For some phys-
ical configurations, besides the scattered waves, the signal
envelope is also influenced by a line-of-sight (or direct)
wave. In these cases, the Rice distribution [2] constitutes
the appropriate model [1].

Different statistics concerning the Ricean model have al-
ready been reported in the literature. In particular, Refer-
ences [3, 4] present the correlation coefficient of two in-
stantaneous powers (or squared envelopes). In Reference
[4], both wide-band and narrow-band signals are analysed,
and it is observed that the narrow-band model is sufficient
for computing the space correlation coefficient within the
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range of 20% of the carrier frequency. We note that this is the
most common situation found in wireless communication
scenario. In this work, we provide the space-frequency cor-
relation coefficient of two generalised instantaneous pow-
ers of narrow-band signals. We consider both stationary†

and nonstationary environments. As an intermediate step,
marginal and joint moments of arbitrary positive integer
orders of the instantaneous powers are derived.

As is widely known, the envelope correlation coef-
ficient plays a crucial role in attaining the coherence
distance (or time) and the coherence bandwidth of the
signal envelope. These coherence parameters are used as
reference, respectively, for the space (or time) separation
and for the frequency separation in diversity systems.
For Ricean signals, these parameters will be evaluated
through the power correlation coefficient, which constitutes

† In this work, the term stationary environment designates the environment
where the Ricean factor and the signal mean power of one signal are equal
to their counterparts of the other signal.

Received 14 June 2005
Revised 24 January 2006

Copyright © 2006 AEIT Accepted 10 April 2006



J. R. MENDES, M. D. YACOUB AND D. B. da COSTA

an accurate approximation to the envelope correlation
coefficient [3].

This work is structured as follows. In Section 2, the
Ricean model is introduced. In Section 3, the generalised
power statistics of two signals are derived. In Section 4,
some applications of the results provided in this work are
carried out. In Section 5, the main conclusions are sum-
marised.

2. SIGNAL MODEL

Consider two narrow-band signals, S1 and S2, transmitted
at different frequencies and detected at distinct points. The
complex representation of each signal Si is

Zi = Ri exp (I�i) = Xi + IYi i = 1, 2 (1)

where I is the imaginary unit, Ri is the signal envelope,
�i is the signal phase and Xi and Yi are, respectively, the
in-phase and quadrature signal components. In the Ricean
model, Xi and Yi are uncorrelated variates with identical
variances (σ2

i ), X1, Y1, X2 and Y2 are jointly Gaussian, and
the mean of Zi is

mZi = mi exp (Iϕi) = mXi + ImYi i = 1, 2 (2)

The parameter σ2
i stems from the multipath waves of Si,

whereas mZi , from the direct wave of Si. Finally, we define

µ1 = Cov{X1, X2}
σ1σ2

= Cov{Y1, Y2}
σ1σ2

(3a)

µ2 = Cov{X1, Y2}
σ1σ2

= −Cov{Y1, X2}
σ1σ2

(3b)

where Cov{·, ·} is the covariance operator. The coefficients
µ1 and µ2 usually depend on the distance between the re-
ception points, on the frequency difference between the
transmitted signals and on the statistical behaviour of the
angles of arrival and the times of arrival of the scattered
waves [5–7].

In the present model, Xi and Yi, have arbitrary means,
namely mXi and mYi (Equation (2)). However, in calcu-
lating the joint moment of the instantaneous powers, it is
more appropriate to define new Gaussian random variables,
namely X̂i and Ŷi, such that Ŷi has zero mean. To this end,
we define X̂i and Ŷi as

X̂i = Xi cos (ϕi) + Yi sin (ϕi) i = 1, 2 (4a)

Ŷi = Yi cos (ϕi) − Xi sin (ϕi) i = 1, 2 (4b)

where ϕi is the phase of the direct wave of Si (Equation (2)).

Because X̂i and Ŷi are linear combinations of Xi and Yi,
also the variates X̂1, Ŷ1, X̂2 and Ŷ2 are jointly Gaussian.
Moreover, using Equation (4) and the statistics of the origi-
nal Gaussians, the means, variances and covariances of the
new Gaussians are

E{X̂i} = mi i = 1, 2 (5a)

E{Ŷi} = 0 i = 1, 2 (5b)

Var{X̂i} = Var{Ŷi} = σ2
i i = 1, 2 (5c)

Cov{X̂i, Ŷi} = 0 i = 1, 2 (5d)

Cov{X̂1, X̂2} = Cov{Ŷ1, Ŷ2} = µcσ1σ2 (5e)

Cov{X̂1, Ŷ2} = −Cov{Ŷ1, X̂2} = µsσ1σ2 (5f)

where E{·} is the expectation operator, Var{·} is the variance
operator, and‡

µc = ρ cos (φ + ϕ1 − ϕ2) (5g)

µs = ρ sin (φ + ϕ1 − ϕ2) (5h)

ρ =
√

µ2
1 + µ2

2 (5i)

φ = arg {µ1 + Iµ2} (5j)

Note that also X̂i and Ŷi are uncorrelated (Eq. (5d)), and
that R2

i = X2
i + Y2

i = X̂2
i + Ŷ2

i .
Thus, the joint probability density function (JPDF) of X̂1,

Ŷ1, X̂2 and Ŷ2 is

fX̂1,2Ŷ1,2
(x̂1, ŷ1, x̂2, ŷ2)

= 1

4π2(1 − ρ2)σ2
1σ2

2

exp

{
− 1

2(1 − ρ2)

[
(x̂1 − m1)2 + ŷ2

1

σ2
1

+ (x̂2 − m2)2 + ŷ2
2

σ2
2

− 2µc
(x̂1 − m1)(x̂2 − m2) + ŷ1ŷ2

σ1σ2

− 2µs
(x̂1 − m1)ŷ2 − ŷ1(x̂2 − m2)

σ1σ2

]}
(6)

The present model is general and encompasses as spe-
cial cases: stationary environments, for which m1 = m2
and σ1 = σ2; and the Rayleigh distribution, for which
mi = 0.

‡ In this work, arg{·} denotes the argument of the complex number enclosed
within.
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3. GENERALISED POWER STATISTICS

In this section, the marginal and joint moments of arbi-
trary positive integer orders of the instantaneous powers
are provided. With the purpose of expressing these statis-
tics in more compact forms, we shall present them in terms
of the normalised instantaneous powers W̃i (or normalised
squared envelopes R̃2

i ), which are given by

W̃i = R̃2
i = R2

i

E
{
R2

i

} = X̂2
i + Ŷ2

i

m2
i + 2σ2

i

i = 1, 2 (7)

3.1. Marginal power moment

The marginal moment E{W̃ν
i } of the Ricean model, as well-

known in the literature [8], is given by

E{W̃ν
i } = exp (−ki)�(ν + 1)1F1(ν + 1, 1, ki)

(1 + ki)ν
(8)

where �(·) is the gamma function [9, eq. 8.310.1], 1F1(·)
is the hypergeometric function [9, eq. 9.14.1], and ki =
m2

i /(2σ2
i ) is the Ricean factor.

In this work, as our interest are the cases in which ν is
an integer n, we provide an alternative expression for that
statistic, which is

E{W̃n
i } = 1

(1 + ki)n

n∑
j=0

j∑
l=0

[
(−1)j−l(n + l)!

(j − l)!(l!)2
k
j
i

]
(9)

The main advantage of Equation (9) with respect to Equa-
tion (8) is the absence of the hypergeometric function, which
is generically expressed as an infinite sum of terms. Further-
more, Equation (9) is computationally more efficient.

3.2. Joint power moment

In order to obtain the joint power moment, it is convenient
to calculate the ratio

CR(j2,n,k, �) �
E

{
X̂

2j1
1 Ŷ

2n1−2j1
1 X̂

2j2
2 Ŷ

2n2−2j2
2

}
σ

2n1
1 σ

2n2
2

(10)

where n1, n2, j1 and j2 are positive integers satisfying ji ≤
ni, i = 1, 2, j2 = [j1, j2], n = [n1, n2], k = [k1, k2] =
[m2

1/(2σ2
1 ), m2

2/(2σ2
2 )] and � = [µc, µs].

The integral representation of this coefficient is

CR(j2,n,k, �) = 1

σ
2n1
1 σ

2n2
2

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
x̂

2j1
1 ŷ

2n1−2j1
1 x̂

2j2
2 ŷ

2n2−2j2
2

×fX̂1,2Ŷ1,2
(x̂1, ŷ1, x̂2, ŷ2)dx̂1dŷ1dx̂2dŷ2 (11)

where the JPDF fX̂1,2Ŷ1,2
(x̂1, ŷ1, x̂2, ŷ2) is given in Equa-

tion (6). After replacing that JPDF into Equation (11) and
performing a long procedure of manipulation, the authors
have solved such an integral in an exact manner [10], so that

CR(j2,n,k, �) = 2j1+j2k
j1
1 k

j2
2

∑2j1
j3=0

∑2j2
j4=0

[ (
2j1
j3

) (
2j2
j4

)
×

(
2j3+j4k

j3
1 k

j4
2

)−1/2
CG(j4,n,k, �)

]
(12a)

where j4 = [j1, j2, j3, j4], and the coefficient CG(j4,n,
k, �) is given by§

CG(j4,n,k, �) = j3!(2n1 − 2j1)!µ2n1−2j1
c µ

j3
s

(
µc
µs

)j4

×
�j3/2�∑
l1=0

j3−2l1∑
l2=0

n1−j1∑
l3=0

n1−j1−l3+�(j4+l2)/2�∑
l4=�(j4+l2)/2�

[
(−1)j4+l2

2l1+l3 l1!l2!l3!

× [2(n1+n2−j1−j2−l1−l3−l4)+j3+j4−1]!!
(j3−2l1−l2)!(2n1+j4+l2−2j1−2l3−2l4)!

× (2l4−1)!!
(
1−ρ2

)l1+l3

(2l4−j4−l2)!µ
2l1
c µ

2l3
s

(
µc
µs

)2l2−2l4
]

(12b)

for (j3 + j4) even and by

CG(j4,n,k, �) = 0 (12c)

for (j3 + j4) odd.
Now, using Equations (7) and (10), the joint moment of

the instantaneous powers can be expressed in terms of the
coefficient CR(j2,n,k, �) as

E
{
W̃

n1
1 W̃

n2
2

} = 1

2n1+n2 (1 + k1)n1 (1 + k2)n2

×
n1∑

j1=0

n2∑
j2=0

[(
n1

j1

) (
n2

j2

)
CR(j2,n,k, �)

]
(13)

where n1 and n2 are positive integers.

§ In this work, �·� is the greatest integer less than or equal to the num-
ber enclosed within, and �·� is the smallest integer greater than or equal
to the number enclosed within and (2n − 1)!! = (2n − 1) · (2n − 3) · . . .

· 5 · 3 · 1.
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3.3. Power correlation coefficient

By definition, the correlation coefficient of W̃
n1
1 and W̃

n2
2 is

δn1,n2 = Cov{W̃n1
1 , W̃

n2
2 }√

Var{W̃n1
1 }Var{W̃n2

2 }
(14a)

where

Cov{W̃n1
1 , W̃

n2
2 } = E{W̃n1

1 W̃
n2
2 } − E{W̃n1

1 }E{W̃n2
2 } (14b)

Var{W̃ni

i } = E{W̃2ni

i } − E2{W̃ni

i } i = 1, 2 (14c)

In Equation (14), the joint moment E{W̃n1
1 W̃

n2
2 } is found

through Equations (12) and (13), whereas the marginal mo-
ments are obtained directly from Equation (9). Since n1 and
n2 are arbitrary positive integers, the power correlation co-
efficient provided here is rather general. For the particular
case in which n1 = n2 = 1, Equation (14a) simplifies to

δ1,1 = ρ2 + 2µc
√

k1k2√
(1 + 2k1)(1 + 2k2)

(15)

We finalise this section observing that the correlation co-
efficient of W

n1
1 and W

n2
2 is equal to the correlation coeffi-

cient of W̃
n1
1 and W̃

n2
2 .

4. APPLICATIONS

In this section, we first provide expressions for µc and
µs. Next, we investigate, in both space domain and fre-
quency domain, the power correlation coefficient of the
Ricean model for k1 = k2 = k (stationary environments)
and n1 = n2 = n. Then, we analyse the coherence param-
eters of the Ricean model. Finally, we propose approxima-
tions for the correlation coefficient of noninteger orders of
the instantaneous powers.

4.1. Gaussian correlation parameters µc and µs

For the multipath phenomenon, we shall assume the phys-
ical model described by Jakes [5], which provides

µ1 = E{D(
) cos (βd cos (
) − �ωT )}
E{D(
)} (16a)

µ2 = E{D(
) sin (βd cos (
) − �ωT )}
E{D(
)} (16b)

where D(·) is the horizontal directivity pattern of the re-
ceiving antenna, β is the phase constant, d is the distance
between the reception points, �ω is the angular frequency

difference between the transmitted signals, and 
 and T are
random variables that designate, respectively, the angles of
arrival and the propagation delay times of the multipath
waves. For a mobile receiver, d = vτ, where v is the mobile
velocity, and τ is the time.

In the Jakes’s model [5], the variate βd cos (
) − �ωT

represents the phase difference between each multipath
wave of S1 and its counterpart of S2. Similarly, we express
the phase difference between the direct waves of S1 and S2
as

ϕ2 − ϕ1 = βd cos (θd) − �ωtd (17)

where θd is the angle of arrival of the direct wave, and td is
the propagation delay time of the direct wave. Both θd and
td are assumed deterministic.

From Equations (5g–5j), (16) and (17)

µc = E{D(
) cos [βd (cos (
) − cos (θd)) − �ωT]}
E{D(
)}

(18a)

µs = E{D(
) sin [βd (cos (
) − cos (θd)) − �ωT]}
E{D(
)}

(18b)

where T = T − td. Taking the instant of arrival of the direct
wave as time reference, T is the time of arrival of the scat-
tered waves. As the direct wave travels through the shortest
path between the transmitter and the receiver, T ≥ td, and
hence T ≥ 0. The expressions in Equation (18) can be ap-
plied to any D(·) and any JPDF of 
 and T.

4.2. Numerical results

In this subsection, we shall investigate the space correlation
coefficient δn,n(d) and the frequency correlation coefficient
δn,n(�ω) for stationary environments (k1 = k2 = k). With
the intention of maintaining compatibility with the results
already available for the Rayleigh case [5], we shall
consider

D(θ) = 1 (19a)

p
,T(θ, t) = p
(θ)pT(t) (19b)

p
(θ) = 1

2π
0 < θ ≤ 2π (19c)

pT(t) = 1

T
exp

(
− t

T

)
t > 0 (19d)

where T is the time delay spread.

Copyright © 2006 AEIT Euro. Trans. Telecomms. (in press)
DOI: 10.1002/ett



CLOSED-FORM GENERALISED POWER CORRELATION COEFFICIENT OF RICEAN CHANNELS

Replacing Equation (19) into Equation (18) yields

µc = J0(βd)
[
cos [βd cos (θd)] − �ωT sin [βd cos (θd)]

]
1 + (�ωT)2

(20a)

µs = −J0(βd)
[
�ωT cos [βd cos (θd)] + sin [βd cos (θd)]

]
1 + (�ωT)2

(20b)

Throughout the following analysis, we shall denote
�

δn,n(d) (�ω = 0): generalised space correlation coeffi-
cient of the instantaneous powers (or squared envelopes);

�

δn,n(�ω) (d = 0): generalised frequency correlation co-
efficient of the instantaneous powers (or squared en-
velopes).

Figure 1 illustrates the influence of k on δ1,1(d) for
θd = 90◦. It can be noted that, in general, the values of the
modulus of δ1,1(d) increases with k. This shows that the
line-of-sight wave strengthens the space dependency of
two signals. Figure 2 presents the influence of θd on δ1,1(d)
for k = 1. As it can be seen, θd affects significantly the be-
haviour of the space correlation coefficient. In both Figures
1 and 2, δ1,1(d) assumes null values at the same points.

Concerning the frequency correlation coefficient, from
d = 0, Equation(5i) and Equation (20), it follows that µc =
ρ2. In this case, substituting this relation and k1 = k2 = k

into Equation (15), yields δ1,1(�ω) = ρ2. Therefore, the
frequency correlation coefficient δ1,1(�ω) is independent
of k. Furthermore, since θd appears in the coefficients µc
and µs only when there is a space separation (d �= 0), θd
has no effect on δn,n(�ω) independently of n.

Figure 1. Influence of k on the space correlation coefficient for
n = 1 and θd = 90◦.

Figure 2. Influence of θd on the space correlation coefficient for
n = 1 and k = 1.

For different values of n, Figures 3 and 4 show δn,n(d)
(k = 1 and θd = 90◦) and δn,n(�ω) (k = 1) respectively.
Clearly, the correlation coefficients increases as the integer
n decreases.

4.3. Coherence parameters

It has been shown in Reference [3] that, for the Ricean
model, the power correlation coefficient δ1,1 is an accu-
rate approximation to the envelope correlation coefficient
δ0.5,0.5, statistic from which the coherence distance (or time)
and the coherence bandwidth of the signal envelope are
extracted. Based on this, the coherence parameters of the
Ricean model can be well-evaluated directly from δ1,1.

(1) Coherence Distance (or Time): The coherence distance
dc (or time τc) is defined as the space (or time) separation

Figure 3. Influence of n on the space correlation coefficient for
k = 1 and θd = 90◦.
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Figure 4. Influence of n on the frequency correlation coefficient
for k = 1.

above which the envelope correlation coefficient is be-
low a certain value. For the Rayleigh model, a safe
choice for the coherence distance is dc = 0.5λ (λ is
the wavelength) [5], since ∀d ≥ 0.5λ, δ0.5,0.5(d) < 0.2.
Now, turning our attention to Figure 1, it can be seen
that, for the Ricean case with k ≥ 1, such a property no
longer holds: above d = 0.5λ (βd = π), the correlation
coefficient still assumes significant values. If the 0.2
threshold is used, then the safest assumption is to have
βdc greater than several units of π, say βdc = 6π. This
shows that, in order to ensure a reasonable decorrela-
tion between two Ricean signals, the distance between
their reception points must exceed 3λ (and not 0.5λ as
for the Rayleigh case).

(2) Coherence Bandwidth: The coherence bandwidth �ωc
is defined as the frequency separation above which
the envelope correlation coefficient is below a certain
value. For the Rayleigh case, �ωc is chosen so that
∀�ω ≥ �ωc, δ0.5,0.5(�ω) < 0.5 [5]. Since δ1,1(�ω)
≈ δ0.5,0.5(�ω) is independent of k, the coherence band-
width of the Ricean signal is identical to the coherence
bandwidth of the Rayleigh signal.

4.4. Non-integer orders of the instantaneous powers

Next, we propose an approximation to the correlation coef-
ficient of non-integer orders of the instantaneous power (or
squared envelope).

From Figures 3 and 4, it can be seen that δn,n is close to
δn+1,n+1. Thus, for a non-integer ν satisfying n< ν < n + 1
(n ≥ 1 integer), the correlation coefficient of Wν

1 and Wν
2 ,

namely δν,ν, can be well-approximated by the interpolation

δν,ν=̇(ν − n)(δn+1,n+1 − δn,n) + δn,n ν > 1 (21)

5. CONCLUSION

In this work, we have derived exact and closed-form ex-
pressions for the marginal and joint moments and for the
correlation coefficient of arbitrary positive integer orders
of the instantaneous powers (or squared envelopes) of two
Ricean signals. All provided statistics have been expressed
as finite sums of simple functions of the model parameters.

Departing from the physical model described by Jakes,
the Gaussian correlation parameters of the Ricean model
have been expressed in terms of the distance between the re-
ceptions points and of the frequency difference between the
transmitted signals. Then, the generalised power correlation
coefficient, as well as the coherence parameters, has been
investigated in both space domain and frequency domain.
It has been observed that the coherence distance (or time)
increases with the Ricean factor k, and that the coherence
bandwidth is independent of k. Moreover, the generalised
power correlation coefficient increases as the integer order
n decreases. Finally, approximations to the correlation co-
efficient for non-integer orders of the instantaneous powers
have been proposed.
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