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Abstract— Exact expressions for the level crossing rate and Il. BRANCH STATISTICS
average fade duration of M-branch equal-gain and maximal-
ratio combining systems in a Hoyt fading environment are
presented. The expressions apply to unbalanced, non-identical,
independent diversity channels and have been validated by The Hoyt fading envelop&; and phas®; at theith branch,
specializing the general results to some particular cases whose; = 1,..., M, is modelled as

solutions are known and, more generally, by means of simulation.
R = JXP+Y7 (1)

Index Terms— Average fade duration, equal-gain combining, Y;
Hoyt fading channels, level crossing rate, maximal-ratio combi- ©; = arctan < (2)
ning. @
where X; andY; are independent zero-mean Gaussian random
I. INTRODUCTION variables (RVs) with variancess;, ando3. , respectively. The

HE performance of wireless communication systems gint probability density function (JPDfJr, e, (-, -} of ; and
— b; cos 20;
) ©

considerably affected by the multipath propagation phe-: is given by [8]

nomena. Diversity-combining techniques are effective msea T4

used for mitigating the deleterious effects of fading. Thwr P%®: (ri, 0) = Qumy/1— b2 P < Q0 -02)

of occurrence of fades, or level crossing rate (LCR), and the ’

average fade duration (AFD) provide a dynamic characteriZdhere Q; = E[RF] and b, = (0%, — 0%.)/(0%, + o%,),

tion of the communication channel. As second-order siagist —1 < b; < 1 is the Hoyt fading parameter. The probability

quantities, they complement the static probabilistic dption ~ density function (PDFpp,(-) of R; is obtained as

of the fading signal (the first-order statistics), and hawmentl r2 bir

several applications in the modelling and design of pratticPr; (ri) = 5y m ( 1—172)) Io (Qv(l—Lbf)>

systems. (4)
LCR and AFD expressions of a single channel have begpere 1, (.) is the modified Bessel function of the first kind

derived for Rayleigh [1], Rice [2], Nakagami{[3] and, more 5,4 zeroth order.

recently, Hoyt [4] fading environments. Several works have

addressed the second-order statistics of diversity-caimpi ' order to derive the LCR and AFD of EGC and MRC’ we

systems, including the following. In [5], LCR and AFD explresShall make use of the conditional PDF (CPDM) |R:, o.C1)

sions of selection combining (SC), maximal-ratio combininof the envelope time derivativé; at the ith branch g|ven

(MRC), and equal-gain combining (EGC) for dual-branci: and ©;. From (1), R;R; = X;X; + Y;Y;, where X; and

diversity in correlated Rayleigh channels were preserifed. Yi denote, respectively, the time derivatives &f and Y;.
case of)M independent identically distributed (iid) Nakagaminowing thatX; = R; cos ©; andY; = R; sin ©;, then

m chan_nels was sol\(ed in [6] for SC, MR_C, an_d EGC. _Some R = X, cos0; + Y, sin O, )
results involving the independent but non-identical Nalag ) _
m diversity case were presented in [7]. For isotropic scattering,X; and Y; are known to be zero-

The Hoyt (Nakagami-q) distribution [8] spans the range gfiean Gaussian RVs with variancg$, = (v2r f,,)%0%, and
the fading figure from the one-sided Gaussian to the Raylelgﬁ (V27 fin)? ay, respectively, wherg,,, is the maximum

distributions, and has found applications in mobile si¢ell Doppler shift in Hertz [1]. Thus, from (5)R;, given R; and
propagation channels [4]. Despite its practical interemtyv ©,, is also zero-mean Gaussian distributed, so that
little attention has been paid to this type of fading. This oo
paper providesxact LCR and AFD expressions for MRC and Pi i o (Filri,0:) = exp 1 ( T ) ©6)
EGC in Hoyt channels. The formulas applyé unbalanced, il i, V27og, 2 \org,
Bon identical, independent branches and have been \adidat With 62 = Qu(mfu)2(1 + by cos 20;).
y specializing the general results to some partlcularscase R;
whose solutions are known and, more generally, by means offhe LCR and AFD of a random signal are defined, re-
simulation. spectively, as the average number of upward (or downward)
_ crossings per second at a given level and as the mean time
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combiner outputR at levelr are, respectively, given by [2] written as (14), whereg, o,(-,-) is given by (3). (Observe
that the inclusion of©;s in the formulations led to a

nr(r) = / PR p (1 7)di (7) closed-form integration ove in (7).) From (8), (10), and
]g (14), the output AFD of EGC in a multi-branch Hoyt fading
Tr(r) = r(r) (8) s obtained.
np(r)
wherepy, . (-,-) is the JPDF ofR and its time derivativeR, IV. MAXIMAL -RATIO COMBINING
and Pg(+) is the cumulative distribution function (CDF) &. In MRC, the received signals are cophased, each signal
In the following, (7) and (8) shall be calculated fof-branch is amplified appropriately for an optimal combining, and
EGC and MRC in a Hoyt fading environment. the resultant signals are added so that the combiner output
envelopeR is given byR = />°™  R2. Thus

I1l. EQUAL-GAIN COMBINING

. . M
In EGC, the received signals are cophased and added Z (15)

so that the combiner output envelop®, already taking

into account the resultant output noise power, is written as
R— Z R,. Thus The MRC analysis follows exactly the same steps detailed for
1=1

EGC in the previous section, considering t]rv}at for MRC, the

:u|:u

hyperplane used to compufe;(-) is 7* = Y_;_, r? and that

M
Z @ 6% = (nfu)2(XM RHVSM QR2(1 + by cos 26;). The
i=1 resulting Pr(-), pp i (- ) andng() are given by (16), (17),
The CDF of R can be calculated as the integration ofind (18), respectNer
the JPDF ofR;, ¢ = 1,...,M, over the M-dimensional = _
volume bounded by the hyperplam@r =M r; and the / / Vo /\/TQ i=3"i /\/T2 i=2 "]
0

coordinate hyperplanes [9]

ﬁ\

VMr N Mr—ry VMr—YMor; pVMr=M,r; X PRy,....Rum (le () ’I“]u)d?"lde ceodryr—adry (16)
Pg(r) :/0 /0 /0 /O As before,pr, gy (11, 7ar) = [100, pr, (ri), since the

X DRy 1. tag)dridrs - drag_idry;  (10)  Pranches are independent. From (8), (16), and (18), theubutp
R g (71 s a0 )T MM AFD of MRC in multi-branch Hoyt fading is obtained.
wherepr, . gy (11, ) = 112, pr, (1) is the JPDF of
R;, i = 1,..., M, since the branches are independent, and V. RESULTS

pr,(-) is given by (4). . The formulations obtained in this paper can be specialized
Note, from (6) and (9), thatR, given R; and ©;, o those already found in the literature. In particular f

i=1,..., M, is a zero-mean Gaussian variate with CPDF balanced diversity channels and = 0, — 1,..., M, they
. (Flr S Orr) = reduce to theM -branch EGC and MRC of the iid Rayleigh
PRIR:,...Ra.©1,...00 T 2oy TML 015 oo, UM case, given by [6, Egs. 23 and 24] for = 1 and [6, Egs. 38
1 177\ 11 and 39], respectively. In the same way, for balanced channel
V2R R B (11) andb; — £1,7 = 1,..., M, they reduce to the iid one-sided

Gaussian case, given by [6, Egs. 23, 24, 36 and 37] with
and variances? = %Zﬁl Q;(1+ b; cos20;). Next, m = 0.5. For the more general cases, including identical
we shall exploit this fact by including the variate®;s and non-identical fading branchesghaustive simulations have
in the formulation of py 4(-,-). As shall be seen, this been carried out and compared with the analytical expmessio
will greatly simplify the calculations. Derivating (10) thi obtained here. All the cases investigated revealed anlertel
respect tor to obtain pr(r) as in [6] and then using agreement between analytical and simulation results.. Rigs
the Bayes’ rule,py ;(-,-) can be found as (12), whereand 2 show the LCR and the AFD of EGC and MRC, re-

PRy Rap.0r... 0.0t (3o esssnese ) is the JPDF ofR;,  spectively, forM =1,2,4 andb; = 0,0.9,0.999, considering
O, i=1,.... M, andR. Of course, identical Hoyt-fading channels. For the sake of claritye th
simulation data have been omitted in the figures. In facy the
PRy Rag 10 0ap 2Ty T 015 00y 1) = are practically coincident with the theoretical curves.
i Or...0 (TIT1s s Tar, 015 O
R|R1,...,Rn,001,..., OM( |( ; ) )) 13) VI. CONCLUSIONS
X y T1y---sTM, geeey .
PRy Rat 81,0 11 M M Exact formulas for level crossing rate and average fade
where ppip,  ryer...@y Clsssooo0) i given by duration of thel-branch EGC and MRC techniques in a Hoyt
(11) and pg,,. Ry.01,..00m (17T, 01,...,00) = fading environment were presented. These formulas have bee

Hﬁlpm@i(rﬁ,@i), since the branches are independentalidated by specializing the general results to some qdaii
Using (13) into (12) and (7), the output LCR of @-branch cases whose solutions are known and, more generally, by
EGC system in a Hoyt fading environment can be finalljneans of simulation.
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Fig. 1. LCR and AFD of EGC for identical Hoyt-fading channels
(M =1, 2,4andb; =0, 0.9, 0.999).
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Fig. 2. LCR and AFD of MRC for identical Hoyt-fading channels
(M =1, 2,4 andb; =0, 0.9, 0.999).



