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Abstract—This paper derives general exact expressions for the level
crossing rate (LCR) and the average fade duration (AFD) of dual-branch
selection, equal-gain, and maximal-ratio combiners operating over non-
identical correlated Weibull fading channels. Sample numerical results
are discussed by specializing the general expressions to a space-diversity
system using horizontally spaced antennas at a mobile station. It is verified
that as the antenna spacing becomes larger, the LCR decreases, becoming
oscillatory and convergent. In addition, when the direction of the mobile is
perpendicular to the axis of the antenna, the AFD is loosely dependent on
the antenna spacing. Some simulation results are presented to verify the
correctness of the analytical formulation.

Index Terms—Average fade duration (AFD), diversity-combining
techniques, level crossing rate (LCR), Weibull fading channels.

I. INTRODUCTION

Diversity-combining techniques constitute an effective means to
combat the deleterious effects of multipath fading on the performance
of wireless communication systems. This performance can be eval-
uated by several measures, including the level crossing rate (LCR)
and the average fade duration (AFD). Although the branch signals
may be correlated and nonidentically distributed in practical systems
[1]–[6], the literature on the LCR and AFD of diversity techniques
over nonidentical correlated fading is not as rich as for the inde-
pendent scenario. Pioneering work on this issue was carried out by
Adachi et al. [1] for dual-branch selection combining (SC), equal-
gain combining (EGC), and maximal-ratio combining (MRC) over
balanced correlated Rayleigh channels. The unbalanced correlated
Rayleigh and Ricean cases were addressed in [2] and [3] for MRC.
In [4], Yang et al. presented a unified treatment for LCR and AFD
of M -branch SC over unbalanced correlated Rayleigh, Ricean, and
Nakagami-m channels. In [5], the LCR and AFD for the MRC
were derived for a correlated unbalanced Nakagami-m environment.
More recently, an extension of [1] for unbalanced channels was
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investigated in [6]. To the best of the authors’ knowledge, these
second-order statistics for correlated nonidentical Weibull fading chan-
nels have not been investigated in the literature yet. This paper derives
general exact expressions for the LCR and AFD for dual-branch SC,
EGC, and MRC combining systems in a Weibull fading environment.
The expressions apply to nonidentical correlated diversity channels.
Some numerical results are presented for a space-diversity system
using horizontally spaced antennas at a mobile station. To verify the
correctness of the analytical formulation, simulation data are also
provided.

This paper is organized as follows: Section II establishes the
model for the Weibull fading channels and derives the Weibull joint
bidimensional envelope-phase density (JBEPD). Some key statistics
involving the branch envelopes and their time derivatives are derived in
Section III. Relying upon these statistics, general exact LCR and AFD
expressions are also presented. Section IV computes the conditional
means and variances for each diversity system. Section V shows some
numerical and simulation plots, and Section VI draws some conclu-
sions. Appendix A details the formulation of the complex covariance
matrix. Appendix B demonstrates the relation between the conditional
statistics (means, variances, and covariance) of the real variates with
those of the complex variates.

II. PRELIMINARIES

The Weibull distribution is an empirical distribution, which was first
proposed aiming at applications in reliability engineering. It has also
found use in wireless communications to model the fading envelope
[7]–[9]. In [10] and [11], a very simple physical model for the Weibull
distribution was proposed. In essence, in the proposed model, the
received signal Zi at branch i (i = 1, 2) can be represented in a
complex form as

Zi = R
αi/2
i exp(jΘi) = Xi + jYi (1)

where
√

j = −1; Ri is the Weibull envelope; Θi is the Weibull phase,
which is uniformly distributed in [0, 2π); Xi and Yi are independent
zero-mean Gaussian variates with identical variances σ2

i ; and αi > 0
stands for the Weibull fading parameter. The probability density
function (pdf) fRi

(·) of the envelope Ri is given by

fRi
(ri) =

αir
αi−1
i

Ωi

exp

(
−rαi

i

Ωi

)
(2)

where Ωi = E(Rαi
i ) = 2σ2

i , and E(·) stands for the statistical av-
erage. For the special cases αi = 1 and αi = 2, (2) reduces to the
negative exponential and Rayleigh pdfs, respectively. The kth moment
of Ri is expressed as

E
(
Rk

i

)
= Ω

k/αi
i Γ

(
1 +

k

αi

)
. (3)

The mean power Pi is obtained directly from (3) by setting k = 2.
From (1), it can be seen that the Weibull envelope Ri is obtained
as the modulus of the multipath Rayleigh envelope RRi to the power
2/αi. Hence, the relation between Ri and RRi can be expressed as
Ri = R

2/αi
Ri .
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The Weibull JBEPD fR1,R2,Θ1,Θ2(r1, r2, θ1, θ2) is attained by
capitalizing on the results available in the literature for Rayleigh distri-
bution. The Rayleigh JBEPD fRR1,RR2,Θ1,Θ2(·, ·, ·, ·) is given in [12,
eq. (7.51)]. Based on the relation between Ri and RRi, as described
above, it follows that Rα1

1 = R2
R1, and Rα2

2 = R2
R2. Of course,

fR1,R2,Θ1,Θ2(r1, r2, θ1, θ2)= |J |fRR1,RR2,Θ1,Θ2(·, ·, ·, ·), where | · |
denotes the determinant operator, and J is the Jacobian of the transfor-
mation. From the above, |J | = (α1α2/4)r

α1/2−1
1 r

α2/2−1
2 . Using this

and after algebraic manipulations, we have

fR1,R2,Θ1,Θ2(r1, r2, θ1, θ2)

=
α1α2rα1−1

1 rα2−1
2

4π2Ω1Ω2(1− ρ2)
exp

(
−rα1

1 Ω2 + rα2
2 Ω1

(1− ρ2)Ω1Ω2

)

× exp

(
2r

α1
2

1 r
α2
2

2

√
Ω1Ω2ρ cos(θ2 − θ1 − φ)

(1− ρ2)Ω1Ω2

)
(4)

where ρ2=[E2(X1X2)+E2(X1Y2)]/σ2
1σ2

2 , and φ=Arg[E(X1X2)+
jE(X2Y1)].

III. LCR AND AFD

The LCR NR(r) and the AFD TR(r) of a random signal are
defined, respectively, as the average number of upward (or downward)
crossings per second at a given level and as the mean time the signal
remains below this level after crossing it in the downward direction.
The LCR and AFD of the output combiner R = R(t) at level r are,
respectively, given by

NR(r) =

∞∫
0

ṙfR,Ṙ(r, ṙ)dṙ (5)

TR(r) =
FR(r)

NR(r)
(6)

where fR,Ṙ(·, ·) is the joint pdf of R and its time derivative Ṙ, and
FR(·) is the cumulative distribution function (CDF) of the envelope
R. In the following, (5) and (6) shall be calculated for a dual-branch
nonidentical correlated Weibull fading environment using the SC,
EGC, and MRC techniques.

A. Diversity Systems

The output envelope time derivative for the SC, EGC, and MRC
combining systems is given by

Ṙ =




Ṙ1, R1 ≥ R2

Ṙ2, R1 < R2
, SC

Ṙ1+Ṙ2√
2

, EGC
R1Ṙ1+R2Ṙ2√

R2
1+R2

2

, MRC

. (7)

For all of the combining schemes, the density of Ṙ given Ri’s
and Θi’s, i.e., fṘ|R1,R2,Θ1,Θ2

(ṙ|r1, r2, θ1, θ2), is Gaussian with mean

mṘ(r1, r2, θ1, θ2)
∆
= mṘ and variance σ2

Ṙ
(r1, r2, θ1, θ2)

∆
= σ2

Ṙ
, as

correctly and pioneeringly demonstrated in [1] and then in [6] for the
Rayleigh case. These quantities depend on the combining scheme and
shall be determined next. Now, using the properties of the conditional
probability, the following can be written:

fṘ,R1,R2,Θ1,Θ2
(ṙ, r1, r2, θ1, θ2)

=fṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2)fR1,R2,Θ1,Θ2(r1, r2, θ1, θ2) (8)

where fR1,R2,Θ1,Θ2(r1, r2, θ1, θ2) is given by (4). The tricky part of
the problem is the determination of mṘ and σ2

Ṙ
for each combining

scheme. For the moment, assume that these quantities are known.
Then, by means of [1, eq. (8)] for SC and of [13, eqs. (12) and (17)] for
EGC and MRC, respectively, the LCR can be expressed as (9), shown
at the bottom of the page, in which

ϑ(r1, r2)
∆
=

∞∫
0

ṙfṘ|R1,R2,Θ1,Θ2
(ṙ|r1, r2, θ1, θ2)dṙ

=
σ2

Ṙ√
2π

exp

(
− mṘ

2σ2
Ṙ

)
+

mṘ

2

(
1+erf

(
mṘ√
2σ2

Ṙ

))
(10)

where erf(·) is the error function. The CDF FR(·) of R can be
expressed as [14]

FR(r) =

γ1∫
0

γ2∫
0

2π∫
0

2π∫
0

fR1,R2,Θ1,Θ2(r1, r2, θ1, θ2)dθ1dθ2dr2dr1

(11)

where

{
γ1 = γ2 = r, for SC
γ1 =

√
2r, γ2 =

√
2r − r1, for EGC

γ1 = r, γ2 =
√

r2 − r2
1, for MRC

. (12)

The AFD follows directly from (6), (9), and (11).
From (7), for each combining scenario, it is possible to express the

mean mṘ and variance σ2
Ṙ

of the conditional Gaussian density of

Ṙ in terms of the mean mṘi
, variance σ2

Ṙi
, and covariance σṘi,Ṙl

(i, l = 1, 2) of the conditional Gaussian density of Ṙi given Ri’s and
Θi’s, i.e., fṘi|R1,R2,Θ1,Θ2

(ṙi|r1, r2, θ1, θ2), based on the linearity of
the mean operator [15, eq. (6-162)] and using the property given in [15,
eq. (6-167)]. A similar procedure was also used in [1] but for correlated
balanced Rayleigh fading channels.

NR(r) =




2π∫
0

2π∫
0

r∫
0

ϑ(r1, r)fR1,R2,Θ1,Θ2(r1, r, θ1, θ2)dr1dθ1dθ2 +
2π∫
0

2π∫
0

r∫
0

ϑ(r, r2)fR1,R2,Θ1,Θ2(r, r2, θ1, θ2)dr2dθ1dθ2 SC

2π∫
0

2π∫
0

√
2r∫

0

√
2ϑ(r1,

√
2r − r1)fR1,R2,Θ1,Θ2(r1,

√
2r − r1, θ1, θ2)dr1dθ1dθ2, EGC

2π∫
0

2π∫
0

r∫
0

r√
r2−r2

1

ϑ
(

r1,
√

r2 − r2
1

)
fR1,R2,Θ1,Θ2

(
r1,
√

r2 − r2
1, θ1, θ2

)
dr1dθ1dθ2, MRC

(9)
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IV. CONDITIONAL STATISTICS OF Ṙi

This section constitutes a crucial step for solving the problem
addressed here. The mean mṘi

, variance σ2
Ṙi

, and covariance σṘi,Ṙl
,

as required in the previous formulations, shall be obtained.
Differentiating (1) with respect to time, it follows that Ṙi =

(2/αi)R
1−(αi/2)
i Re[Żi exp(−jΘi)], where Re[·] denotes the real

part of a complex number. The conditional statistics of Ṙi’s
can be written in terms of the conditional statistics of Żi’s as
(see Appendix B)

mṘi

∆
=E(Ṙi|Z)

=
2

αi

R
1− αi

2
i Re

[
E(Żi|Z)e−jΘi

]
(13)

σ2
Ṙi

∆
=Var(Ṙi|Z)

=
2R2−αi

i

α2
i

Var(Żi|Z) (14)

σṘi,Ṙl

∆
=Cov(Ṙi, Ṙl|Z)

=
2

αiαl

R
1− αi

2
i R

1− αl
2

l Re
[
ejΘilCov(Żi, Żl|Z)∗

]
(15)

where Var(·) and Cov(·) denote the variance and covariance, respec-
tively. Define Ż = [Ż1Ż2], and Z = [Z1Z2], in which Ż1, Ż2, Z1, and
Z2 are mutually correlated zero-mean complex Gaussian variables.
The complex covariance matrix Φ is defined as [1]

Φ =
1

2
E

[(
Ż
Z

)∗(
Ż
Z

)T
]

∆
=

[
a c
cH b

]
(16)

where (·)∗ denotes the conjugate operator, (·)T denotes the trans-
pose matrix, and (·)H denotes the Hermitian matrix. Defining ρil(τ)
as the complex cross-correlation function between the ith and lth
branches, then

ρil(τ) =
E (Z∗

i (t)Zl(t + τ))√
ΩiΩl

. (17)

The matrices a, b, and c can be expressed as (see Appendix A)

a =
1

2

[
−ρ̈11Ω1 −ρ̈12

√
Ω1Ω2

−ρ̈12

√
Ω1Ω2 −ρ̈11Ω2

]
(18)

b =
1

2

[
Ω1 ρ12

√
Ω1Ω2

ρ12

√
Ω1Ω2 Ω2

]
(19)

c =
1

2

[
0 −ρ̇12

√
Ω1Ω2

ρ̇12

√
Ω1Ω2 0

]
(20)

where ρ̇il = dρil(τ)/dτ |τ=0, ρ̈il = d2ρil(τ)/dτ2|τ=0, and ρil
∆
=

ρil(0). Note that the diagonal elements in matrix c are null, because
for a stationary process, the correlation between the process and its
time derivative is always null at τ = 0 (ρ̇11 = ρ̇22 = 0) [15].

From [16, pp. 495–496], the conditional density of Ż given Z is
Gaussian distributed with mean matrix M and covariance matrix ∆
given by

M =

[
E(Ż1|Z)
E(Ż2|Z)

]

=(cb−1)∗Z (21)

∆ =
1

2

[
Var(Ż1|Z) Cov(Ż1, Ż2|Z)

Cov(Ż1, Ż2|Z)∗ Var(Ż2|Z)

]

=a− cb−1cH . (22)

Substituting (18)–(20) into (21) and (22), the conditional statistics of
Żi given Z is obtained as

M=
1

1−|ρ12|2


 ρ12ρ̇∗

12Z1−ρ̇∗
12

√
Ω1
Ω2

Z2√
Ω2
Ω1

ρ̇∗
12Z1−ρ12ρ̇∗

12Z2




=
1

1−|ρ12|2


 ρ12ρ̇∗

12R
α1/2
1 ejΘ1−ρ̇∗

12

√
Ω1
Ω2

R
α2/2
2 ejΘ2√

Ω2
Ω1

ρ̇∗
12R

α1/2
1 ejΘ1−ρ12ρ̇∗

12R
α2/2
2 ejΘ2


 (23)

∆=
1

2


 −Ω1

(
ρ̈11+

|ρ̇12|2
1−|ρ12|2

)
−
√
Ω1Ω2

(
ρ̈12+

ρ∗
12|ρ̇12|2

1−|ρ12|2

)
−
√
Ω1Ω2

(
ρ̈∗
12+

ρ12|ρ̇∗
12|

2

1−|ρ12|2

)
−Ω2

(
ρ̈11+

|ρ̇12|2
1−|ρ12|2

)

.

(24)

Finally, replacing (23) and (24) into (13)–(15), the conditional statis-
tics of the real variates Ṙi’s are obtained as

mṘ1
=

2

α1

1

1− |ρ12|2

[
r1Re [ρ12ρ̇∗

12]− r
1− α1

2
1 r

α2
2

2

×
√

Ω1

Ω2

Re
[
ρ̇∗
12ejθ12

]]
(25)

mṘ2
=

2

α2

1

1− |ρ12|2

[
r

α1
2

1 r
1− α2

2
2

√
Ω2

Ω1

Re
[
ρ̇∗
12ejθ12

]

− r2Re [ρ12ρ̇∗
12]

]
(26)

σ2
Ṙi

= − 2Ωir
2−αi
i

α2
i

[
ρ̈11 +

|ρ̇12|2
1− |ρ12|2

]
, i = 1, 2 (27)

σṘ1,Ṙ2
=− 2

√
Ω1Ω2

α1α2

r
1− α1

2
1 r

1− α2
2

2 Re

[(
ρ̈∗
12+

|ρ̇12|2 ρ12

1− |ρ12|2

)
ejθ12

]
.

(28)

V. NUMERICAL RESULTS AND DISCUSSIONS

The expressions obtained here for the LCR and AFD are general,
and can be applied to any type of diversity (space, frequency, or
time). In this section, sample numerical results are discussed assuming
a space-diversity system with horizontally spaced omnidirectional
antennas at the mobile station. In this case, for incoming multipath
waves having equal amplitude and independent phases, the cross-
correlation functions are given by [1]

ρ11(τ)=J0(2πfmτ) (29)

ρ12(τ)=J0

(
2π
√

(fmτ)2+(d/λ)2−2(fmτ) (d/λ cos(β))
)

(30)

where J0(·) is the zero-order Bessel function, λ is the carrier wave-
length, fm is the maximum Doppler shift in hertz, d is the antenna
spacing, and β ∈ [0, 2π) is the angle between the antenna axis and
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Fig. 1. LCR and AFD of SC, EGC, and MRC for d/λ = 0.2 and identical
correlated fading channels (αi = 1.5 and Pi = 0.5).

Fig. 2. LCR and AFD of SC, EGC, and MRC for d/λ = 0.2, αi = 1.5, and
nonidentical correlated (P1 = 0.1, P2 = 0.9) fading channels.

the direction of the vehicle motion in radians [1]. The corresponding
correlation coefficients can be calculated as

ρ11 =1 (31)

ρ12 =J0(2πd/λ) (32)

ρ̇12 =2πfm cos(β)J1(2πd/λ) (33)

ρ̈12 =(2πfm)2
{

J1(2πd/λ)

2πd/λ
cos(2β)−cos2(β)J0(2πd/λ)

}
(34)

ρ̈11 = −2(πfm)2 (35)

where J1(·) is the first-order Bessel function.
Fig. 1, for the identical correlated case (Pi = 0.5), and Fig. 2, for

the nonidentical correlated case (P1 = 0.1, P2 = 0.9), show the LCR
(left axis) NR(r)/fm and the AFD (right axis) TR(r)fm as a function
of the normalized envelope r/ α

√
P1 + P2 for SC, EGC, and MRC.

The following arbitrary parameters have been used: d/λ = 0.2; β = 0;
β = π/2; and αi = α = 1.5. In all of them, the no diversity (ND)
case has also been included. Note that for both figures, the typical
performance concerning the LCR in diversity systems holds, i.e., the
MRC has better performance, followed by EGC, SC, and ND. On the
other hand, considering the metric AFD, the same cannot be said.
For β = 0 (antenna angle parallel to the vehicle motion), the use of
diversity is harmful to the performance systems.

Fig. 3. LCR of SC, EGC, and MRC for r/ α
√

P1 + P2 = −20 dB and
operating on identical correlated fading channels (Pi = 0.5) with arbitrary
fading parameters.

Fig. 4. AFD of SC, EGC, and MRC for r/ α
√

P1 + P2 = −20 dB and
operating on identical correlated fading channels (Pi = 0.5) with arbitrary
fading parameters.

Figs. 3 and 4, for the identical correlated case, and Figs. 5 and 6, for
the nonidentical correlated case, show the LCR and AFD as a function
of the parameter d/λ for SC, EGC, and MRC given a normalized
envelope level at r/ α

√
P1 + P2 = −20 dB. The other parameters have

been kept the same as before except for the parameter αi, which was
included in the figures (αi = 3). In all the cases, the curves with ND
reception have also been included. From Figs. 3 and 5, it can be seen
that as the antenna spacing increases, the LCR decreases, becoming
oscillatory and convergent. Also, from Figs. 4 and 6, it is observed that
the shape of the AFD curves for all the combining schemes is loosely
dependent on the antenna spacing for β = π/2. Still considering the
AFD metric, for β = 0, depending on the antenna spacing, the use of
diversity can be advantageous or not for the performance system. It is
evident from Figs. 3–6 that an enhancement of the fading conditions
(increasing α) implies an improvement of performance.

Fig. 7 compares our exact analytical expressions with some simula-
tion results. The curves were plotted for identical correlated fading
channels with αi = α = 3, β = 0, and d/λ = 0.2. Note the very
good agreement between the curves. For the AFD metric, due to the
proximity between the EGC and MRC curves, only for the former
simulation data were presented. A myriad of other cases has been
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Fig. 5. LCR of SC, EGC, and MRC for r/ α
√

P1 + P2 = −20 dB and
operating on nonidentical correlated fading channels (P1 = 0.1, P2 = 0.9)
with arbitrary fading parameters.

Fig. 6. AFD of SC, EGC, and MRC for r/ α
√

P1 + P2 = −20 dB and
operating on nonidentical correlated fading channels (P1 = 0.1, P2 = 0.9)
with arbitrary fading parameters.

exhaustively investigated, and a very good match has been observed
in all of them.

VI. CONCLUSION

Exact formulas for the LCR and AFD of dual-branch SC, EGC,
and MRC techniques operating on nonidentical correlated Weibull
fading environment have been presented. The expressions obtained
here are general and can be applied to any type of diversity (space, fre-
quency, or time). Furthermore, some numerical results were discussed
by specializing the general expressions to a space-diversity system
using horizontally spaced antennas at a mobile station. Interestingly,
situations are found for which the use of diversity may be deleterious.
Some simulation results were presented, and a very good adjustment
between the analytical and simulated curves was observed.

APPENDIX A

The goal of this Appendix is to obtain each term of the complex
covariance matrix Φ given in (16). By expanding (16), the matrices a,

Fig. 7. Comparison between analytical and simulated curves of the LCR and
AFD for SC, EGC, and MRC operating on identical correlated fading channels
(Pi = 0.5), d/λ = 0.2, αi = 3, and β = 0.

b, and c can be formulated as

a =
1

2

[
Cov(Ż1, Ż1) Cov(Ż1, Ż2)
Cov(Ż2, Ż1) Cov(Ż2, Ż2)

]
(36)

b =
1

2

[
Cov(Z1, Z1) Cov(Z1, Z2)
Cov(Z2, Z1)

∗ Cov(Z2, Z2)

]
(37)

c =
1

2

[
Cov(Ż1, Z1) Cov(Ż1, Z2)
Cov(Ż2, Z1) Cov(Ż2, Z2)

]
. (38)

Defining ρil(τ) as in (17), and noting that ρ̇il = dρil(τ)/dτ |τ=0,

ρ̈il = d2ρil(τ)/dτ2|τ=0, and ρil
∆
= ρil(0), it follows that

Cov (Z1(t), Z1(t + τ)) = ρ11(τ)Ω1

∴ Cov(Ż1, Ż1) = −Ω1
d2ρ11(τ)

dτ2

∣∣∣∣
τ=0

= −ρ̈11Ω1 (39)

Cov (Z1(t), Z2(t + τ)) = ρ12(τ)
√

Ω1Ω2

∴ Cov(Ż1, Ż2) = −
√

Ω1Ω2
d2ρ12(τ)

dτ2

∣∣∣∣
τ=0

= −ρ̈12

√
Ω1Ω2 (40)

As ρ̈12 = ρ̈21, then Cov(Ż1, Ż2) = Cov(Ż2, Ż1)

Cov (Z2(t), Z2(t + τ)) = ρ22(τ)Ω2

∴ Cov(Ż2, Ż2) = −Ω2
d2ρ22(τ)

dτ2

∣∣∣∣
τ=0

= −ρ̈22Ω2

= −ρ̈11Ω2. (41)

Knowing that ρ11(τ) = ρ22(τ) = J0(2πfmτ), then ρ̈11 = ρ̈22

Cov(Zi, Zi) =Ωiρii(τ)|τ=0 = Ωi (42)

Cov(Ż1, Z1) =Ω1
dρ11(τ)

dτ

∣∣∣∣
τ=0

= 0 = Cov(Ż2, Z2) (43)

since ρ11(τ) = ρ22(τ) = J0(2πfmτ)

Cov(Z1, Z2) =
√

Ω1Ω2ρ12(τ)|τ=0

= ρ12

√
Ω1Ω2 (44)
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Cov(Ż1, Z2) = −
√

Ω1Ω2
dρ12(τ)

dτ

∣∣∣∣
τ=0

= −ρ̇12

√
Ω1Ω2 (45)

Cov(Ż2, Z1) =
√

Ω1Ω2
dρ12(τ)

dτ

∣∣∣∣
τ=0

= ρ̇12

√
Ω1Ω2. (46)

APPENDIX B

In this Appendix, we derive the relations given in (13)–(15).

• Calculation of E(Ṙi|Z).
Differentiating both sides of (1) with respect to time yields

Żi =
αi

2
R

αi/2−1
i Ṙie

jΘi + jΘ̇iR
αi/2
i ejΘi . (47)

Rearranging the terms and applying the mean operator gives

Ṙi =
2

αi

R
1−αi/2
i Re

[
Żie

−jΘi
]

∴ E(Ṙi|Z) =
2

αi

R
1−αi/2
i Re

[
E(Żi|Z)e−jΘi

]
. (48)

• Calculation of Var(Ṙi|Z).
Using the identity Re[x] = (x + x∗)/2, we can write

Ṙi =
2

αi

R
1−αi/2
i Re

[
Żie

−jΘi
]

=
2

αi

R
1−αi/2
i

(
Żie

−jΘi + Ż∗
i ejΘi

2

)
. (49)

Using the definition of complex variance, it follows that

Var(Ṙi|Z) = E
(
|Ṙi|2|Z

)
−
∣∣E(Ṙi|Z)

∣∣2 . (50)

The first term of the right side of the equality given in (50) can
be expressed as

E
(
|Ṙi|2|Z

)
=E
(
ṘiṘ∗

i |Z
)

=E

((
2

αi

R
1−αi/2
i

Żie
−jΘi + Ż∗

i ejΘi

2

)

×
(

2

αi

R
1−αi/2
i

Ż∗
i ejΘi + Żie

−jΘi

2

)
|Z
)

=
R2−αi

i

α2
i

(
2E
(
|Żi|2|Z

)
+ e−j2ΘiE

(
Ż2

i |Z
)

+ ej2ΘiE
((

Ż∗
i

)2 |Z)
)

. (51)

The second term of the right side of the equality given in (50)
can be expressed as∣∣E(Ṙi|Z)

∣∣2 =E(Ṙi|Z)E
(
Ṙ∗

i |Z
)

=E

(
2

αi

R
1−αi/2
i

Żie
−jΘi + Ż∗

i ejΘi

2
|Z
)

× E

(
2

αi

R
1−αi/2
i

Ż∗
i ejΘi + Żie

−jΘi

2
|Z
)

=
R2−αi

i

α2
i

(
2
∣∣E(Żi|Z)

∣∣2 + e−j2ΘiE(Żi|Z)2

+ ej2ΘiE
(
Ż∗

i |Z
)2)

. (52)

By substituting (51) and (52) into (50), it follows that

Var(Ṙi|Z) =
2R2−αi

i

α2
i

(
Var(Żi|Z)

+ Re
[
e−j2ΘiCov

(
Żi, Ż∗

i |Z
)∗])

. (53)

The next step is to prove that the term Cov(Żi, Ż∗
i |Z)∗ is

zero. Following a similar procedure to that applied in Section IV,
it can be verified that such term is always zero. Then, (53)
reduces to

Var(Ṙi|Z) =
2R2−αi

i

α2
i

Var(Żi|Z). (54)

• Calculation of Cov(Ṙi, Ṙl|Z).
The calculation of Cov(Ṙi, Ṙl|Z) follows a similar rationale.

For brevity, it will not be presented here.
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