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Abstract— This paper provides simple, exact, new closed-
form expressions for the generalized phase crossing rate of
Nakagami-m fading channels. Sample numerical results obtained
by simulation are presented that validate the formulations
developed here. A special case of this formulation is the Rayleigh
case, whose result agrees with that obtained elsewhere in the
literature. In passing, several new closed-form results concern-
ing the statistics of the envelope, its in-phase and quadrature
components, phase, and their time derivatives are obtained.

Index Terms— Phase crossing rate, Nakagami-m fading chan-
nels.

I. INTRODUCTION

IN WIRELESS communications, envelope and phase of
a received signal vary in a random manner because of

multipath fading. The behavior of the envelope in a fading
channel has been extensively explored in the literature. On
the other hand, although the knowledge of the phase variation
of the received signal plays a crucial role in the design of any
communication technique, its characterization for an important
fading channel, namely Nakagami-m, remains unknown. The
study of the phase behavior may be useful, for instance, in
the design of optimal carrier recovery schemes needed in
the synchronization subsystem of coherent receivers [1]. A
pioneering work in this matter was carried out by Rice in
his classical paper [2], in which the aim was to evaluate the
click noise in FM systems, assuming the noise spectrum to be
symmetric about the sine wave frequency. In this sense, Rice
obtained the phase crossing rate at the particular phase levels
θ = 0 and θ = π for the envelope lying within an arbitrary
range. In [3], the work by Rice was extended to consider
asymmetrical noise spectrum as well as arbitrary phase levels,
i.e., −π ≤ θ ≤ π. More recently, [4] and [5] investigated the
phase crossing statistics, respectively, for the Hoyt (Nakagami-
q) and Weibull processes. In this work, we define PCR as the
usual phase crossing rate and GPCR as the phase crossing rate
conditioned on the envelope lying within an arbitrary range.

This Letter provides simple, exact, new closed-form ex-
pressions for the GPCR of Nakagami-m fading channels.
Clearly, the PCR is also attained as a special case. Exhaustive
simulations fully validate the formulation proposed here. Our
formulation makes use of the fading model recently presented
in [6], in which a phase-envelope joint probability distribution
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for the Nakagami-m fading has been proposed. In passing,
several new closed-form results concerning the statistics of
the envelope, its in-phase and quadrature components, phase,
and their time derivatives are obtained.

This paper is organized as follows. Section II revisits the
phase-envelope joint fading model of [6]. Section III derives
the joint statistics of the envelope, phase, and their time
derivatives. Section IV derives the GPCR. Section V presents
sample numerical results. Finally, Section VI draws some
conclusions.

II. THE NAKAGAMI-m
PHASE-ENVELOPE JOINT MODEL REVISITED

Let R and Θ be random variables representing, respec-
tively, the envelope and phase of the Nakagami-m signal. The
Nakagami-m phase-envelope joint probability density function
(JPDF) fR,Θ(r, θ) is given by [6]

fR,Θ(r, θ) =
mm| sin(2θ)|m−1 r2m−1

2m−1Ωm Γ2(m
2 )

exp
(
−mr2

Ω

)
(1)

where Ω = E[R2], m = E2[R2]/(E[R4] − E2[R2]), Γ(·)
is the Gamma function [7, Eq. 6.1.1], and E[·] denotes the
expectation operator. According to this model [6], assuming
X and Y as, respectively, the independent in-phase and
quadrature components of the Nakagami-m signal, their PDF
fZ(z), Z = X or Z = Y , is given by

fZ(z) =
m

m
2 |z|m−1

Ω
m
2 Γ(m

2 )
exp

(
−mz2

Ω

)
,−∞ < z < ∞ (2)

From [6], Z = S |Z|, where S stands for sgn (Z) (sign of Z)
and |Z| is Nakagami-m distributed. Then, for mathematical
simplicity, we write Z = SN , where N denotes a Nakagami-
m variate.

III. JOINT STATISTICS OF THE

ENVELOPE, PHASE, AND THEIR DERIVATIVES

Let Ż be the time derivative of Z. From the above, Ż =
ṠN +SṄ . Because S assumes the constant values ±1, except
for the transition instants (−1 → +1 and +1 → −1), its
time derivative Ṡ is nil. In addition, because Z is continuous,
the transition instants occur exactly and only at the zero
crossing instants of Z, when N = |Z| is nil. Therefore,
ṠN = 0 always and Ż = SṄ . It has been shown in [8]
that Ṅ is independent of N and Gaussian distributed with
zero mean and standard deviation σ̇ = πfd

√
Ω/m (fd is the

maximum Doppler shift in Hz). Knowing that Ż = SṄ , Ż
is also Gaussian distributed conditioned on Z = SN , having
the same distribution parameters as Ṅ . Consequently, Ż is
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independent of Z. More specifically, X is independent of Ẋ ,
and Y is independent of Ẏ . From the proposed model [6], X
and Y are independent processes. Thus, X is independent of
Ẏ and Y is independent of Ẋ . Using (2) for Z and knowing
that Ż is Gaussian distributed with the cited parameters, then
the JPDF fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ) is given by

fX,Ẋ,Y,Ẏ (x, ẋ, y, ẏ) = fX (x) fẊ (ẋ) fY (y) fẎ (ẏ) =

=
mm+1 |x|m−1|y|m−1

Ωm+1 Γ2(m
2 ) 2π3 f2

d

× exp
(
−m

Ω

(
x2 + y2 +

1
2π2f2

d

ẋ2 +
1

2π2f2
d

ẏ2

))

(3)

From [6], X = R cos Θ and Y = R sin Θ. Therefore,
Ẋ = Ṙ cos Θ − RΘ̇ sin Θ and Ẏ = Ṙ sin Θ + RΘ̇ cos Θ.
Following the standard statistical procedure for the trans-
formation of variates and after algebraic manipulations, the
JPDF fR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) of the envelope, the phase, and their
respective time derivatives, is obtained as

fR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) =
mm+1 r2m | sin(2θ)|m−1

Ωm+1 Γ2(m
2 ) 2mπ3f2

d

× exp

(
−m

Ω

(
r2 +

ṙ2 + r2 θ̇2

2π2 f2
d

))
(4)

For m = 1, (4) reduces to the Rayleigh fading case given
in [9, Eq. 1.3-33]. Note also that fR,Ṙ,Θ,Θ̇(r, ṙ, θ, θ̇) =
fṘ(ṙ)fΘ(θ)fR,Θ̇(r, θ̇). Some important densities are obtained
by performing the appropriate integration in (4) and they are
shown as follows:

fR,Θ,Θ̇(r, θ, θ̇) =
mm+ 1

2 r2m| sin(2θ)|m−1

2m− 1
2 Ωm+ 1

2 Γ2(m
2 ) fd π3/2

× exp

(
−mr2

Ω

(
1 +

θ̇2

2π2 f2
d

))
(5)

fΘ,Θ̇(θ, θ̇) =
| sin(2θ)|m−1 Γ(m + 1

2 )

2m+ 1
2

(
1 + θ̇2

2π2 f2
d

)m+ 1
2

Γ2(m
2 ) fd π3/2

(6)

fΘ̇(θ̇) =
Γ(m + 1

2 )
√

2
(
1 + θ̇2

2π2 f2
d

)m+ 1
2

Γ(m) fd π3/2

(7)

The distribution FΘ̇(θ̇) of Θ̇ is obtained as

FΘ̇(θ̇) =
1
2

+
θ̇ Γ(m + 1

2 ) 2F1

(
m, 1

2 + m; 3
2 ;− θ̇2

2π2f2
d

)
√

2 fd π3/2Γ(m)
(8)

where 2F1(·, ·; ·; ·) is the hypergeometric function [7, Eq.
15.1.1]. Next, we derive the GPCR of Nakagami-m fading
channels.

IV. GENERALIZED PCR

The PCR, denoted by NΘ(θ), is defined as the average
number of upward (or downward) crossings per second at a
specific phase level θ. This definition can be extended to a
general case (GPCR), in which the crossing rate of the phase
is conditioned on r1 ≤ R ≤ r2, as performed by Rice [2] for

the click noise problem investigation in FM systems. Thus,
the GPCR of Nakagami-m channels can be formulated as

NΘ|R(θ; r1, r2) =
∫ ∞

0

θ̇fΘ,Θ̇;R(θ, θ̇|r1 ≤ R ≤ r2)dθ̇

=

∫ r2

r1

∫ ∞
0

θ̇fR,Θ,Θ̇(r, θ, θ̇)dθ̇dr

FR(r2) − FR(r1)
(9)

In (9), FR(·) is the distribution of R, which, for the
Nakagami-m case, is given by FR(r) = γ(m,mr2/Ω)/Γ(m),
where γ(·, ·) is the incomplete Gamma function [7, Eq. 6.5.2].
By the appropriate substitutions and carrying out the necessary
algebraic manipulations

NΘ|R(θ; r1, r2) =
√

πfd | sin(2θ)|m−1

2m+ 1
2 Γ2(m

2 )

× Γ(− 1
2 + m;mρ2

1,mρ2
2)Γ(m)

Γ(m,mρ2
2,mρ2

1)
(10)

where Γ(a; b, c) = γ(a, b)− γ(a, c) is the generalized incom-
plete Gamma function and ρ2

i = r2
i /Ω, i = 1, 2. In particular,

for m = 1, we obtain the generalized PCR for Rayleigh fading
channels, which can be expressed as

NΘ|R(θ; r1, r2) =
fd Γ( 1

2 ; ρ2
1, ρ

2
2)

2
√

2π (exp(−ρ2
1) − exp(−ρ2

2))
(11)

For the specific case in which r1 = 0 and r2 = ∞

NΘ(θ) =
√

π fd | sin(2θ)|m−1 Γ(m − 1
2 )

2m+ 1
2 Γ2(m

2 )
(12)

For m = 1 (Rayleigh case), (12) yields

NΘ(θ) =
fd

2
√

2
(13)

Note that (13) is independent of the phase level θ, which is
coherent with the result obtained by Rice [2].

V. NUMERICAL RESULTS

In this section, some plots illustrate the formulations ob-
tained. In addition, the validity of the proposed formulations
is checked by comparing the theoretical curves against the
simulation results. As will be observed, an excellent agreement
has been achieved between the simulation results and the
formulation proposed here. In Figs. 1 and 2, the normalized
PCR is depicted for several fading conditions. For m = 1
(Rayleigh), this statistics is independent of the phase level,
assuming a constant value equal to 1/(2

√
2), which is coherent

with the result obtained by Rice [2]. For m = 1.5, 2, 2.5, 4, 4.5
the normalized PCR is periodic with period π/2 and nil
for integers multiples of π/2. Note the excellent agreement
between the theoretical and simulated curves.

For m = 2, Fig. 3 shows the normalized GPCR. For
ρ1 = 0 and varying ρ2, we note that the curves do not differ
substantially one from another for ρ2 = 2 and ρ2 = 50. In fact,
it has been observed that the curve for ρ2 = 2 is practically
coincident with that for which ρ2 → ∞.

Fig. 4 depicts the PCR for several fading parameters. For
values of m higher than 1, the maximum of the curves is
reached at odd multiples of π/4. For values of m between
0.5 and 1, the curves are convex with minima at odd multiples
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Fig. 1. Comparison between simulated and theoretical curves for the
normalized PCR.

Fig. 2. Comparison between simulated and theoretical curves for the
normalized PCR.

of π/4, and tending to infinity at integers multiples of π/2,
which is coherent with [4, Eq. 10].

VI. CONCLUSIONS

In this letter, simple, exact, new closed-form expressions
for the generalized PCR were derived for Nakagami-m fading
channels. Sample numerical results obtained by simulation
were presented that validate the formulations developed here.
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