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Abstract— Indoor and outdoor field trial measurements are
used to validate the autocorrelation function derived in an
exact manner for the Weibull fading signal. In addition, an
accurate closed-form approximation to the power spectrum of
the Weibull envelope is obtained and also validated. Comparisons
are performed and an excellent fit to the field measurements is
found.

Index Terms— Field trials, power spectrum, Weibull autocor-
relation function, Weibull distribution, validation.

I. INTRODUCTION

THE multipath fading phenomenon has been characterized
by several statistical models [1]. Some of them pro-

duce very accurate results, especially Rice and Nakagami-m.
Another important fading model is Weibull, which was first
used in problems dealing with reliability. Experimental data
supporting the usefulness of the Weibull fading model for both
indoor and outdoor applications have been widely reported
in the literature (e.g., [2]–[5]). To the best of the authors’
knowledge, the literature dealing with field measurements in
Weibull fading channels has been devoted to the study of
the first order statistics. Very recently [6], a simple closed-
form expression for the generalized cross-moments of the
Weibull distribution has been derived. The resulting correlation
coefficient obtained in [6] has been written in terms of well-
known physical fading parameters, consistently with the other
more general joint statistics used in wireless communications,
such as Rice and Nakagami-m.

In this paper, the autocorrelation function derived in [6] is
validated through field measurements. In addition, an accurate
closed-form approximation to the autocorrelation function is
obtained. This is then used to obtain an accurate closed-form
approximation to the power spectrum of the Weibull envelope,
which is also validated through field measurements.

II. THE AUTOCORRELATION FUNCTION

The temporal autocorrelation function AR(τ) of the Weibull
envelope R has been obtained in [6]. For isotropic environment
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it is given as
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where r̂ = α
√

E[Rα] is the α-root mean value of Rα, E [·]
denotes the expectation operator, α is the Weibull parameter,
Γ(·) is the Gamma function [7, Eq. 8.310.1], 2F1(·) is the
hypergeometric function [7, Eq. 9.14.1], J0(·) is the Bessel
function of the first kind and zeroth order [7, Eq. 8.401],
and ωD is the maximum Doppler shift given in rad/s. Us-
ing the space-time duality of the wireless channel [8], then
ωDτ = 2πd/λ, where d denotes distance, and λ is the carrier
wavelength. Thus, the spatial autocorrelation function AR(d)
of R is

AR(d) = r̂2 Γ2

(
1 +

1
α

)
2F1

(
− 1

α
,− 1

α
; 1;J2

0 (2πd/λ)
)
(2)

A. The moment-based α-estimator

The moments of the Weibull envelope are given as E[Rk] =
r̂kΓ(1 + k/α). From this [9]

Ei[Rj ]
Ej [Ri]

=
Γi (1 + j/α)
Γj (1 + i/α)

(3)

For a particular case in which i = 2 and j = 1, (3) yields
an estimator given in terms of the first and second moments.
Of course, from (3), other moment-based estimators can be
found.

III. THE ENVELOPE POWER SPECTRUM

The power spectrum SR(β) of the Weibull fading envelope
R is the Fourier transform1 of its autocorrelation function
AR(d) given by (2). Although this leads to an exact calcula-
tion, it seems that no closed-form expression can be found.
In this section, an accurate closed-form approximation to
SR(β) is derived. To this end, the following expansion of the
hypergeometric function 2F1(·) is used [8]
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1The Fourier transform F(β) of a function f(x) is defined here as F(β) =∫ ∞
−∞ f(x) exp(−jβx)dx.
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Fig. 1. Deviation of the approximated and exact Weibull autocorrelation
functions for d = 0.

In (4), dropping the terms of order beyond two, the exact
Weibull autocorrelation function AR(d) (2) can be approxi-
mated by ÃR(d) as

AR(d) ≈ ÃR(d) = r̂2Γ2

(
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The maximum deviation between the exact (2) and the ap-
proximate (5) solutions occurs for d = 0. Defining ∆AR

(0) =
[AR(0)− ÃR(0)]/r̂2, Fig. 1 plots this deviation as a function
of α. Indeed, the deviation is null for α = 1 and less than
1.8% for α > 1. The maximum deviation for α > 1 occurs
at α ≈ 2.21. Also, as α → ∞ both (2) and (5) tend to
r̂2 and ∆AR

(0) = 0. For α → 0, the deviation tends to
infinity. However, α < 1, which corresponds to a Nakagami-m
parameter m < 0.2, is rarely found in real situations. Thus,
for practical purposes (α ≥ 1, i.e. m ≥ 0.2), the proposed
approximation is indeed excellent.

Now, taking the Fourier transform of (5), as shall be seen, an
accurate approximation to SR(β) can be written in a closed-
form formula as

S̃R(β) ≈ r̂2Γ2
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for |β| < 2/λ, where δ(·) is the Dirac delta function and
K (·) is the complete elliptic integral of the first kind [7,
Eq. 8.112.1]. As a check for the correctness of these results,
we note that, for α = 2 (Rayleigh condition), (5) and (6)
specialize into [8, Eq. 1.3-16] and [8, Eq. 1.3-27], respectively.

A. Sample Examples

Fig. 2 illustrates how the exact and approximate autocor-
relation functions of the Weibull envelope vary for different
values of the parameter α. As already mentioned, for α = 1,
approximate and exact expressions are coincident. As α → ∞,
AR(d) → r̂2, i.e., the Weibull process actually becomes
a constant function. The approximation (6) to the Weibull
envelope power spectrum is compared to the exact formulation
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Fig. 2. Weibull normalized autocorrelation function (exact: solid; approxi-
mated: dashed).
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Fig. 3. Weibull normalized envelope power spectrum (exact: solid; approx-
imated: dashed).

(obtained by numerical integration) in Fig. 3. Both exact and
approximated spectra are plotted for α = 0.5, 1, and 2. (The
dc component was omitted in these comparisons.) For α > 1,
the differences are seen to be minimal. The counterpart of
the unity autocorrelation function as α → ∞ is a purely dc
spectrum, i.e., SR(β) → r̂2δ(β) for α → ∞.

IV. FIELD TRIALS AND VALIDATION

A series of field trials was conducted at the University of
Campinas (Unicamp), Brazil, in order to validate the auto-
correlation function and the power spectrum of the Weibull
envelope. To this end, the transmitter was placed on the
rooftop of one of the buildings and the receiver traveled
through the campus as well as within the buildings. The
mobile reception equipment was especially assembled for this
purpose. Basically, the setup consisted of a vertically polarized
omnidirectional receiving antenna, a low noise amplifier, a
spectrum analyzer, data acquisition apparatus, a notebook
computer, and a distance transducer for carrying out the signal
sampling. The transmission consisted of a CW tone at 1.8
GHz. The spectrum analyzer was set to zero span and centered
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Fig. 4. Empirical versus theoretical normalized autocorrelation and normal-
ized power spectrum functions (indoor measurements).
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Fig. 5. Empirical versus theoretical normalized autocorrelation and normal-
ized power spectrum functions (outdoor measurements).

at the desired frequency, and its video output used as the input
of the data acquisition equipment with a sampling interval of
λ/14 [10]–[12]. The local mean was estimated by the moving
average method [10], with the average being conveniently
taken over 450 samples symmetrically adjacent to every point.
From the data collected, the long term fading was filtered
out and the Weibull parameter α, as defined previously, was
estimated.

The normalized empirical autocorrelation was computed
according to

ÂR (∆) =
∑N−∆

i=1 riri+∆∑N−∆
i=1 r2

i

(7)

where ri is the i-th sample of the amplitude sequence, N is
the total number of samples (in this work N = 104), ∆ is
the discrete relative distance difference, and ÂR (·) denotes
an empirical estimate of AR (·).

The empirical autocorrelation function was compared
against the corresponding theoretical formula (2) and plotted
as a function of d/λ with the same parameter α estimated
from the experimental data. Furthermore, the mean error

deviation2, ε, was computed for each case. Figs. 4 and 5 show

some sample plots comparing the experimental and theoretical
autocorrelation data for different values of α. Observe the
excellent fit and how the theoretical curve tends to keep track
of the changes of the concavity of the empirical data. The
error calculated for these curves was smaller than 2.5%.

In order to check the validity of the Weibull envelope
power spectrum formulation (6), we compared it against the
measured data. To this end, we used discrete Fourier transform
(DFT)3 to compute the Fourier transform of the empirical
autocorrelation. Thus, the empirical envelope power spectrum
SR was computed. Figs. 4 and 5 show some sample plots
comparing the experimental and theoretical power spectrum
data for different values of α. Again, an excellent fit has
been observed. The hypothesis of an isotropic scattering seems
more adequate for the outdoor environment, since a somewhat
large deviation between theoretical and experimental points is
observed for the indoor scenario.

V. CONCLUSIONS

In this paper, we have reported the results of field trials
aimed at investigating the second-order statistics of short
term fading signals. An excellent agreement between the
experimental and the theoretical data has been found. The
measurements validate the autocorrelation formula derived in
an exact manner in [6] for the Weibull fading signal. Moreover,
an accurate closed-form approximation to the power spectrum
of the Weibull envelope was also obtained and validated.
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