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The �-� Joint Phase-Envelope Distribution
Daniel Benevides da Costa and Michel Daoud Yacoub

Abstract—This letter derives a simple and closed-form expres-
sion for the phase-envelope joint distribution of the - fading en-
vironment, a general fading model that includes the Hoyt and the
Nakagami- models as special cases. In the same way, the mar-
ginal distribution of the phase is also obtained in an exact closed-
form expression. The phase distribution is then used in order to
derive the probability density funtion (pdf) of the envelope time
derivative, which, as opposed to the Nakagami- and Rice models,
is not Gaussian.

Index Terms—General fading distribution, - distribution.

I. INTRODUCTION

THE - distribution is a general fading distribution that in-
cludes as special cases important other distributions such

as Hoyt (Nakagami- ) and Nakagami- [1], [2]. (Therefore, the
One-Sided Gaussian and Rayleigh are also special cases of it.)
Its flexibility renders it suitable to better adjust to field measure-
ment data, as demonstrated in several field measurement cam-
paigns [2]. In particular, its tail closely follows the true statistics
where other distributions fail to yield good fit. In addition, the

- distribution can be used to approximate the distribution of
the sum of independent, nonidentical Hoyt (Nakagami- ) en-
velopes having arbitrary mean powers and arbitrary fading de-
grees. In this case, the results show that the differences between
exact and approximate statistical curves are almost impercep-
tible [3].

As opposed to Hoyt, Rayleigh, and Rice, for which the deriva-
tion of the envelope probability density function (pdf) produced
as an intermediate step the corresponding joint envelope-phase
pdf, for the - distribution, as well as for Nakagami- , no in-
formation on the signal phase was provided when these distri-
butions were proposed. Recently [4], a model for the envelope
and phase of the Nakagami- signal was presented that led to
a simple joint distribution written in a closed-form manner. The
corresponding phase pdf was then obtained and a compatibility
with the pdfs comprised by Nakagami- (namely, Rayleigh) or
approximated by it (namely, Hoyt and Rice) was achieved.

The distribution of the phase has a great variety of applica-
tions in communications systems [5]–[9], mainly when the in-
formation is transmitted in the phase of a carrier. In special,
the pdf of the phase may be useful, for instance, in determining
probabilities of error for -phase signaling over fading chan-
nels using diversity [10]. The joint envelope-phase distribution,
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by its turn, finds use, for instance, in the determination of higher
order statistics, including level crossing rates for single or multi-
branch diversity scenarios [11].

The aim of this letter is to derive the - envelope-phase joint
pdf in an exact and closed-form manner. It is certainly desir-
able that compatibility with the pdfs comprised by the - dis-
tribution be accomplished. In this case, the envelope-phase joint
pdfs of Hoyt as well as Nakagami- must be obtained as spe-
cial cases of that derived here. From the joint envelope-phase
pdf, the phase pdf is obtained, again in an exact and closed-form
fashion. In addition, in order to illustrate an application of this
result, the pdf of the envelope time derivative is attained.

II. THE - FADING MODEL REVISITED

The - distribution is a general fading distribution that can
be used to better represent the small-scale variation of the fading
signal in a nonline-of-sight condition [1], [2]. As its name im-
plies, it is written in terms of two physical parameters, namely
and , and it may appear in two different formats, Format 1 and
Format 2, corresponding to two physical models [2]. Roughly
speaking, the parameter is related to the number of multipath
clusters in the environment, whereas the parameter is related to
the ratio of the powers (Format 1) or correlation (Format 2) be-
tween the multipath waves in the in-phase and quadrature com-
ponents. These concepts are briefly revisited next.

For a fading signal with envelope and being
the rms value of , the - envelope pdf is written as [1], [2]

(1)

where and are functions of and shall be defined
next for the two different formats, is given by

is the Gamma
function ([12, eq. (6.1.1) ]), is the modified Bessel func-
tion of the first kind and arbitrary order ([12, eq. (9.6.20)]),
and and denote the expectation and variance
operators, respectively. In the sequel, we present the - dis-
tribution and its respective fading model for each one of the
formats.

A. The - Fading Model—Format 1

The fading model for the - distribution (Format 1) con-
siders a signal composed of clusters of multipath waves propa-
gating in an non-homogeneous environment. The in-phase and
quadrature components of the fading signal within each cluster
are assumed to be independent from each other and to have dif-
ferent powers.
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In Format 1, is the scattered wave power ratio
between the in-phase and quadrature components of each cluster
of multipath. In such a case, and

, then . We note that within
the envelope distribution yields the same values as

for within , i.e., as far as the envelope is concerned,
it is symmetrical around .

B. The - Fading Model—Format 2

The fading model for the - distribution (Format 2) con-
siders a signal composed of clusters of multipath waves propa-
gating in an non-homogeneous environment. The in-phase and
quadrature components of the fading signal within each cluster
are assumed to have identical powers and to be correlated with
each other.

In Format 2, is the correlation coefficient be-
tween the scattered wave in-phase and quadrature components
of each cluster of multipath. In such a case,
and , then . We note that within

the envelope distribution yields the same values as
for within , i.e., as far as the envelope is concerned,
it is symmetrical around .

C. Format 1 and Format 2

From the above discussion, we see that
in Format 1 and in Format 2. Then, it can be

easily seen that one format may be obtained from another by
the bilinear relation or, equivalently,

, where is the parameter for Format
1 and is the parameter for Format 2.

III. DERIVATION OF THE - JOINT PHASE-ENVELOPE

DISTRIBUTION

Let be the signal following the - distribution,
in which represents the envelope and the phase. Then, it
follows that

(2)

(3)

where and , and are
Gaussian variates, and corresponds to the number of mul-
tipath clusters, assumed integer initially and then extended to
real. In Format 1, and are zero-mean mutually indepen-
dent processes, i.e., , and non-identical
variances so that and

. In Format 2, and
are zero-mean mutually correlated processes with

and identical variances so that
and . Departing from the

correlated variates and (Format 2) and making a rotation
of axis, we arrive at independent in-phase and quadrature vari-
ates (Format 1-like) having power parameters respectively as

and .

For both formats, and can be expressed in the same
manner as

(4)

(5)

with and assuming different values for the different for-
mats.

From (2), it is possible to write and as and
. Let , where ,

and , or , and , as required.
Now, expressing as , where denotes
the sign function, and performing a similar procedure as that of
[4], then the pdf of is obtained as

(6)

Knowing that, after the transformation described, and are
independent variates for both formats, then their joint pdf is
given by . It follows that

(7)

Using the standard statistical procedure of transformation of
variates so that , where is
the Jacobian of the transformation, and substituting (4) and (5)
in (7), the corresponding joint pdf is given by

(8)

Note that, as opposed to the Nakagami- case, is not inde-
pendent of . Integrating (8) with respect to , we obtain the
phase pdf as

(9)

Although derived for integer values of , there are no math-
ematical constraints for these expressions to be used for any

. It should be emphasized that (8) and (9) are general
novel closed-form expressions. Note also that, in the - model,
envelope and phase are dependent random variables.

IV. SOME DISCUSSIONS

As already mentioned, the envelope pdf of the - distribu-
tion is symmetrical about , for Format 1, and about ,
for Format 2, i.e., it is irrelevant if it is explored within one or
another range of this parameter. However, this is not true for its
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Fig. 1. pdf of the phase for �-� fading model Format 1 (� = 0:5 and �

varying).

phase pdf, in which case a shift of is observed between the
curves within the respective ranges. The result in (9) reduces to
that of Hoyt ([13, eq. (6.3)]) in an exact manner for and
for the Hoyt parameter . In the same way, it re-
duces to exactly that of Nakagami- ([4, eq. (3)]) for
and . The case for which is of special
interest. Although, this condition leads to a Nakagami- enve-
lope pdf, the same does not happen with the phase pdf. As can
be seen from (9), except for and where
impulses occur, the phase pdf is constantly nil throughout the
whole range of . Its dual case is that for which ,
when impulses occur at and . This result is in-
deed expected since signifies the existence of the
quadrature component only, whereas signifies the
existence of the in-phase component only.

In this section, we show some plots of the - phase distri-
bution. For brevity, only Format 1 is depicted. One format may
be obtained from another by the bilinear transformation, as de-
scribed before. Fig. 1 illustrates the pdf of the phase for
and varying from 0.25 to 3. For values of smaller than 0.5,
the curves are convex tending to infinity at integers multiples
of . For , the curve reaches its minimum at inte-
gers multiples of and maximum at odd multiples of . For
values of greater than 0.5, the curves assume null value at in-
teger multiples of . Fig. 2 plots the phase pdf for
and varying. Fig. 3 shows the phase pdf in polar coordinates
with and varying.

V. FURTHER RESULTS

As mentioned before, the distribution of the phase has a great
variety of applications in communications systems. The joint
envelope-phase distribution, for instance, finds use in the de-
termination of higher order statistics, including level crossing
rates for single or multibranch diversity scenarios. In this Sec-
tion, a glimpse at a possible application of the result obtained
here is given. In particular, the pdf of the envelope time

Fig. 2. pdf of the phase for �-� fading model Format 1 (� = 0:6 and �

varying).

Fig. 3. pdf of the phase for �-� fading model Format 1—polar coordinates
(� = 0:5 and � varying).

derivative is derived. In order to do so, we make use of the
conditional pdf of given , as follows:

(10)

From (2), , where and denote, respec-
tively, the time derivatives of and . Knowing that

and , then

(11)

Because ( , or ) is Nakagami- distributed
[4] and its time derivative is Gaussian distributed [14], then for
isotropic scattering is zero-mean Gaussian with

, where is the maximum Doppler shift. From
(11), it can be seen that , given , is zero-mean Gaussian dis-
tributed with variance . By reducing the dependent
in-phase and quadrature components of Format 2 into indepen-
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Fig. 4. pdf of the envelope time derivative for �-� fading model Format 1 (� =
2 and � varying).

dent in-phase and quadrature components of Format 1, as be-
fore, such a variance can be easily found as

(12)

for both formats. By substituting (9) into (10) and knowing that
is a zero-mean Gaussian distribution with variance

as in (12), the pdf of is obtained as in (13)

(13)

For illustration purposes, Figs. 4 and 5 plot (Format 1) the nor-
malized pdf of , as a function of the normalized
envelope time derivative, , for several fading conditions.
Note the Gaussian-like shape of the curves, although is
not Gaussian as are the cases of the Nakagami- and Rice
fading models.

Many other higher other statistics may be found with the aid
of the results obtained here, but this is certainly out of the scope
of this Letter.

VI. CONCLUSION

In this letter, the phase-envelope joint pdf as well as the phase
pdf of the - fading model have been obtained in an exact

Fig. 5. pdf of the envelope time derivative for �-� fading model Format 1 (� =
1 and � varying).

manner. The formulations derived here comprise those of Hoyt
and Nakagami- statistics found elsewhere in the literature. An
interesting feature related to the shape of the curves is that the
distribution of the phase for the range is the
same for the range , but shifted by . The
phase distribution was then used in order to derive the pdf of
the envelope time derivative.
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